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Abstract. A general formulation of the eigenvalue condition is pointed out for a one- 
dimensional stationary part of a separable Schrodinger equation with finite bounds, i.e. 
where the wavefunction vanishes at two arbitrary values of the independent variable. The 
procedure is general and applies equally to other eigenvalue problems of second-order, 
homogeneous differential equations. Where appropriate a continuous density of eigen- 
values can be defined and evaluated without first solving the eigenvalue problem. Illustra- 
tive examples are provided, including gravitational and harmonic oscillator potentials. 

1. Introduction 

It is well known that the quantisation of the one-dimensional, stationary Schrodinger 
equation with coordinate z and energy E 

(1) 
can be formulated as a boundary value problem for the wavefunction $ ( z )  for a 
particle of mass m moving in a potential V ( z ) .  

There are other forms of the stationary Schrodinger equation, such as the radial 
equation for the three-dimensional problem in a spherically symmetric potential, and 
other equations in physics and elsewhere, such as the equation of the classical vibrating 
string, which lead to similar eigenvalue problems (Courant and Hilbert 1953). For 
definiteness we shall consider only (l), as the results may be easily generalised. 

We shall consider boundary conditions defined at two distinct points A and B 

- ( h 2 / 2 m )  d2$(z)/dz2 + ( V ( z ) -  E ) $ ( z )  = 0 

$(A)  = $(B) = 0. (2) 
Only for certain values of the energy E may (1) have solutions which satisfy (2). 
Finding the energies E,,, where n is an integer quantum number, and the associated 
eigenfunctions +,(z) constitutes the problem of quantisation. It is, of course, known 
how to proceed with this in numerous cases, but in general the problems become 
more complicated if the interval (A, B) is finite and V ( z )  is not zero inside (A, B ) .  
In the present paper we shall not attempt rigorous proofs of the statements made. 
Rather, we shall rely on the obvious existence of relevant cases which follow the 
proposed general principle to be stated in § 2. Although we find it hard to believe 
that a method of the present character can be really new, it does not appear to be 
mentioned in the more common references on quantum mechanics or differential 

@ 1983 The Institute of Physics 2137 



2138 U Larsen 

equations in physics. As some problems involving finite bounds appear to be more 
easily tractable within the present method than with those previously applied (see for 
example Auluck and Kothari (1945), Hull and Julius (1956), Dean (1966), Vawter 
(1968) and references therein), it may be reasonable to call attention to it. 

2. General formulation 

Let us assume that the second-order, linear, homogeneous differential equation in 
question depends on the variable x and one or more parameters, among which, for 
simplicity, we distinguish only one, denoted A.  It may be the energy E, for example. 
Let us also assume that a fundamental set of two linearly independent solutions 
u l ( x ,  A )  and u 2 ( x ,  A )  has been found, such that the general solution is 

U ( X ,  A)=c iu i (x ,  A)+CZUZ(X ,  A ) ,  (3)  
where c1 and c2  are two constants. Given this, we assume boundary conditions 

U (a, A )  = U (6, A )  = 0 (4) 

at two points a # b. Equations (3) and (4) imply that c 1  and c2 satisfy the equations 

ciui(a ,  A 1 + czuz(a,  A )  = 0 ,  c l u l ( b , A ) + ~ 2 ~ 2 ( b , A ) = O .  ( 5 )  

This problem is not in general well posed, and equations (5) may not have non-trivial 
solutions for c1  and c z  unless the determinant vanishes: 

u2(a, A ) / u i ( a ,  A 1 = uz(b,  A ) /u i (b ,  A 1. (6) 

This will in general only be true for a discrete set of values of A ,  which we may denote 
A,. In this case the condition (6) imposes the quantisation of A .  

When u 1  and u 2  are linearly independent the ratios in (6) are not constant but 
functions of the arguments of u 1  and u2 .  We consider now the cases in which u 1  and 
u2 as functions of x have a number of simple zeros. In particular, there may be no 
zeros. The zeros of u 2  and u 1  may be assumed to separate each other, which can be 
seen in the following way, unless in one of them there is precisely one zero, which 
case should not be difficult to analyse explicitly, should it occur. The mutual separation 
of the zeros follows, when there are two or more zeros of both functions, if we can 
exclude the possibility that one of the functions ( u 2 )  has two (or more) zeros between 
two consecutive zeros of the other ( u i ) .  There remains then only the possibility that 
each function has precisely one zero between two consecutive zeros of the other. 
Between two zeros a and @ any solution of the differential equation, say u l ,  is also 
a solution of the eigenvalue problem corresponding to bounds a = a and b = p, and 
the parameter A is automatically an eigenvalue. If the zeros are consecutive the 
solution corresponds to the lowest eigenvalue. If there is another solution u2  of the 
same equation, but with A replaced by A ' ,  with two zeros at a '  and @'such that 

a = a < a a ' < p ' < @ = b  

then it is known that for the equations of the Sturm-Liouville type, including the 
Schrodinger equation, this second solution must correspond to an eigenvalue A ', which 
is larger than A ,  if the interval (a ' ,  P ' )  is smaller than (a, b ) .  The only way in which 
u2 can be a solution of the same equation as u l ,  corresponding to the same eigenvalue 
A ' = A ,  is by letting a = a '  and @ =@' .  In this case, the two solutions u 2  and u 1  are 
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proportional to each other, because the eigenvalues are non-degenerate. This contra- 
dicts that they are linearly independent solutions of the original problem. Hence there 
cannot be two zeros of u 2  between two consecutive zeros of u l .  As more zeros of u2 

between two consecutive zeros of u 1  correspond to solutions which belong to larger 
eigenvalues than the lowest, the result follows also for more than two zeros. 

The ratios in (6) will oscillate rapidly between +CC and -00, which implies that we 
may define a phase function e(x, A )  by letting 

(7) 

and that O ( x ,  A )  will be a continuous function of x and A .  Thus, at the zeros of u 1  
we will have e = a12 +pa ,  and at the zeros of u 2 ,  19 = pa,  for a number of integers p ,  
which denumerate the zeros of u 1  and u2 ,  of which there are often infinitely many. 
In the simplest cases @ ( x ,  A )  is a monotonic function of x ,  decreasing or increasing 
depending on the choice of u 1  and u 2 .  For simplicity we henceforth assume this 
property of B ( x , A ) .  Therefore, for the equations which satisfy the criteria, the 
condition of quantisation (6) may be expressed in the form 

tan B ( x ,  A )  = U Z ( X ,  A ) l u l ( x ,  A ) ,  

B(b, A , ) -B(a ,  A,)  = f n r  (8) 

where, if b > a ,  and 0 is increasing (decreasing) with x ,  we should choose the positive 
(negative) sign and 

n = l , 2 , 3  , . . . .  (9) 
This is a formal statement from which the eigenvalues A,, can be deduced if the phase 
function 8 is known. 

Some properties of equation (8) seem to be of interest. Firstly, the function B is 
expressible in terms of standard functions in numerous cases, so its calculation does 
not depend on quadrature. Secondly, the phase function may be assumed sufficiently 
well behaved that the solution of (8) can be performed, if not analytically, then by 
rapidly converging methods, which can achieve arbitrarily high accuracy. It should 
in general, for a given n ,  only be a question of finding the value of A corresponding 
to the intersection of two curves provided by B(b, A )  and @(a,  A ) * n x ,  unless it can 
be shown that no solution exists. In a large number of problems the assured existence 
of an infinite range of non-degenerate eigenvalues asserts that this problem has one 
and only one solution. If the interval (a, 6) is finite this holds for the Schrodinger 
equation, for example, while if the interval is infinite there may occur a continuous 
range of eigenvalues, as well as a discrete one in which there may be limit points. 
The present method offers the opportunity in such cases to regard the interval as 
arbitrarily large, but finite, in which case the eigenvalues may be close but discrete. 

If we consider the possibility of describing the set of eigenvalues A, in terms of a 
continuum density p ( A ) ,  then we find that the number of eigenvalues, starting for 
simplicity at A = 0, up to a given value A is 

(10) N ( A  = * e l ( e ( b ,  A ) - e(a ,  A 1). 

piA)=dN(A)/dA = * a - l ( B ' ( b , A ) - B ' ( a ,  A ) ) ,  (11) 

B ' ( x ,  A )  = aeix, A )/ah. 

Therefore, the density is, for A 3 0, 

where 

(12) 
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Consider the simplest example of a freely propagating particle or a standing wave, 
determined by the equation 

d2u/dx2 +Au = 0. (13) 

U ( x ,  A ) = cos J i x ,  

The set of linearly independent solutions is 

u 2 ( x ,  A = sinJAx, (14) 

@ ( x ,  A )  = JAx.  (15)  

with the phase function 

The quantisation rule (8) gives 

&?(b - a )  = n 7 ~ .  

Hence 

A, = [n.n/(b - a  ) I2 .  
The continuous density of eigenvalues becomes 

(16) 

p ( A )  = [ ( b  -a) /27~]( l /JA).  (17) 

This example also shows the separation of zeros and monotonicity of O(x ,  A ) .  It is, for 
finite potentials in the interval (a, b ) ,  also the general asymptotic limit for large n of 
the Schrodinger equation. For non-vanishing potentials, however, the classical limit 
will be a better approximation (cf 8 3 and 4). 

If the boundary conditions are specified at one or two singular points in some 
problems of physical relevance (cf for example the radial equation in spherically 
symmetric potentials), it may be appropriate to require rather that U ( x ,  A )  should 
remain finite. Other prescriptions regarding the behaviour of U may also be considered. 
In such cases it seems that defining a new function 

u ( x ,  A )  = f ( x ) u ( x ,  A )  (18) 

may be possible, such that the boundary values of u ( x ,  A )  have the form (4), while U 
now satisfies another second-order equation. As the present method does not require 
that a and b are regular points, there is no need for this transformation to remove 
the singular points from the original equation, or to avoid creating new ones in the 
equation for U. It only has to alter the boundary conditions. If, according to (18), 
u 1  = f u l  and u 2  = f u 2  then the Wronskians are related by 

W ( U l , V 2 )  = f ( x ) 2 W ( U I ,  U21 (19) 

which implies that when U I  and u2 are linearly independent so are u 1  and u 2 .  Therefore 
the phase function is not changed by the transformation (18), and the quantisation 
condition (8) holds for the entire class of problems, which can be cast into the form 
(4) by means of a transformation (18). The radial Schrodinger equation for a spherical 
box of radius R, inside which the potential vanishes, with the boundary conditions 
(Messiah 1965) 

lim r-0 r 4 ( r )  = 0 and *(R) = 0 (20) 

provides an example of this, where r = 0 is a singular point. 
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If one of u 1  and u 2  is singular at a boundary, and for that reason immediately 
excluded by having its coefficient c 1  or c2 equal to zero, then the problem reduces to 
the familiar 

u l (b ,  A ) = O  (21) 

if u2 is singular at a and u l ( a ,  A )  = 0.  In such cases the present method offers no 
advantage. For the radial equation it can be shown explicitly that the quantisation 
by the phase function reduces to the familiar j ,(kR)=O, where I is the angular 
momentum, corresponding to (21). In this example (21) holds because the indicia1 
exponents for v l  and v 2  are a1 = I + 1 and a2 = -1 (or I and -1 -- 1 for the spherical 
Bessel functions jl and y r ) ,  but in general opposite signs of these exponents do not 
occur as a rule. 

In cases when the solutions U and u2 may not be standard functions, it is possible 
to apply the quantisation by (8) when the phase function is obtained in the following 
way, which is standard. Let R(x,  A )  define an amplitude function, such that 

( 2 2 )  

Note that R and 8 are not the conventionally defined amplitude and phase of the 
wavefunction itself, and therefore have a different significance from these quantities 
in methods such as the WKB (Messiah 1965). Here the (unnormalised) eigenfunctions 
are 

u(x, A,)=R(x, A,)sin[e(x, An)-8(a,A,)l, (23) 

or forms equivalent to this, subject to the condition (8). This follows immediately 
from ( 5 ) .  Then, for example, for an equation of the form 

(241 

u1 = R COS e, u2 = R sin e. 

d2u/dx2+p(x)  du/dx +q(x, A ) u  =0 ,  

with Wronskian 

we have that R and d satisfy the nonlinear equations 

d9 W d2R W(X)’ dR 
dx2 R 3  + p ( x ) z + q ( x ,  AIR = O ,  dx R 2 ’  

-=- 

and the phase function is given by 

e(x, A )  = I x d y  W(Y ) lR  (Y, A I 2 .  

The amplitude function R has no zeros, because the zeros of u 1  and u2 separate each 
other. Despite the need to use quadrature, this may provide a convenient expression 
of the quantisation condition 

where the positve sign is used, since for the choice R > 0 , 8  is increasing. This equation 
is exact. In the classical limit of the Schrodinger equation 

h + 0 and n +CO,  but nh =finite, 
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this leads to the Bohr-Sommerfeld quantisation rule, which for p(x)  = 0 is 

2 Iabdx [2m(E, - V ( X ) ) ] ” ~  = nh, 

which is obtained directly from (26) by disregarding the second derivative, which is 
small compared with the other terms in the limit h + O .  It would also seem possible 
that a superperturbation theory (Blankenbecler 1966, Madan 1968) could be construc- 
ted from the present formulation, as the amplitude function is free from zeros by 
construction. We shall not pursue this approach, however. 

3. Gravitation 

A uniform gravitational field acting in the direction of negative z gives a potential 
energy 

V ( z )  = mgz (30) 

where g is the gravitational acceleration. Then 

- ( h 2 / 2 m )  d24/dz2 + (mgz - E ) $  = 0. 

Introducing the length scale I ,  defined by 

i 3  = h2/2m2g, 

and the variable x ,  defined by 

z = l ( x + E / m g l ) = l ( x + A ) ,  

the Schrodinger equation is then the Airy equation 

d2uldx2 - X U  = 0, 

(33) 

(34) 

and its linearly independent solutions are the Airy functions 

K = Ai(x), K 2 =  Bi(x), (35) 
where the dependence on the parameter A is implicitly given by (33). The phase 
function is 

(36) 6’ = 8(-x) = tan-’[Bi(x)/Ai(x)], 

which is a known function (Abramowitz and Stegun 1965). Considering bounds 

A s z s B ,  

then 

a =Al l  - A sx < B / l  - A  = b. (37) 
Without loss of generality we may set A = 0. 8 i s  a decreasing function of its argument, 
hence 6’ is increasing when x increases and we should use the positive sign in (8).  
Then the quantisation gives 

(38) 8(A, - B / l )  - 8(A,) = n r .  

Consider first the semi-infinite case B + +CO. Using 

8(-x) - tan-’[2 e ~ p ( $ x ~ ’ ~ ) ] +  +rr 
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for x +CO, we have 

ir - 8 ( ~ , , )  = n r .  

This shows that A,, is given by 

Ai(-A,,) = 0,  

2143 

(39) 

as is well known, This result corresponds to the case (21) due to the singularity in 
Bi at x - 0 0 .  The present method handles the singularity without difficulty. Here, 
however, the singularity is absent whenever b is finite, and the complete solution is 
given by (38). When A,, is large, using 

for x + 00, we have the well known result 
3 1 2 / 3  A,, = E J m g l -  [ m ( n  -411 . 

Large values of A may be regarded as corresponding to the classical limit of letting 
A + 0 in (32) simultaneously with letting the quantum number n become large in such 
a way that E,, remains finite. The relative magnitude of the correction to the leading 
term in the phase function is of the order x - ~ ,  and the approximation is good even 
for rather small values of A .  The density of eigenvalues becomes 

p ( A ) = r - ’ [ 8 ’ ( A  -B/l)-G’(A)],  

which in the leading order gives 

p (A ) - r - ’ Jh .  
This approximation is accurate enough to be regarded as exact as far as a continuous 
density p ( A )  is reasonable, even for small A .  

When an upper bound is introduced the problem becomes somewhat more 
involved, and it  is perhaps only in such cases that the present method may really be 
advantageous. It is evident that 8 is essentially constant if its argument is negative, 
i.e. if 

B I [ > A n ,  

which therefore corresponds to the limit just considered. When A,, becomes larger 
than BII, however, the variation in 8(A, --l3/1) will cause a significant change in the 
eigenvalue spectrum. The nature of this, which is given exactly by the relations (38) 
and (41), is perhaps best evaluated in the classical limit, where 8 has the value 7712 
until A,, = B/I ,  and then for larger A,, the value given by the leading asymptotic term. 
This will produce a discontinuity, which is of course not really there, but for the 
density, which is the relevant quantity in this limit, it produces a good representation 
of the actual function. It is notable here that we do not have to calculate first a 
complicated discrete spectrum of eigenvalues, but may take the desired limit directly 
in the expression (41 1. We get 

- 
for A s B/l ,  
for A 3 B/l. 

p ( A  ) - { rTT-’ 
rTT1[Jh- (A - B/l)’”] 

(43) 
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which is just the case of a particle in a box of extension (0, B )  and zero potential, 
and agrees with (17) .  The relative magnitude of the correction to (44)  is of the order 
A - ’ ,  A better approximation is 

p ( A ) - ( B / 1 2 r ) ( A  -B/21)-”*,  (45)  

where the correction is only of the order A-’. Thus, in the box, the energy is shifted 
upwards by 

( B / 2 l ) m g l =  fmgB, (46)  
which is the average gravitational energy in the motion within the range 0 s z s B ,  
when this motion has beome the plane wave of uniform density. This happens when 
the vertical motion becomes very energetic and the particle is reflected elastically at 
both the upper and lower bounds, rather than being redshifted when climbing the 
gravitational field until its wavelength reaches zero near the classical turning point 
before the upper bound is reached, as corresponds to the motion for values of A less 
than B / l .  Considerations of this nature, of course, apply to any finite potential. 

The result corresponding to the classical limit can also be obtained by the Bohr- 
Sommerfeld quantisation rule. For A L B / l  the classical turning point is at z = B, and 

loB dz [2m ( E  - m g ~ ) ] ” ~  = nrrh, 

which gives 

$[A 3’2 - (A  - B/1)3/’]  = nrr, (47)  
and thereby the result (43) .  It does not, however, provide any estimate of the 
non-classical corrections. The WKB method may do this, while exact results may be 
obtained from the present method, at least in principle. 

4. Oscillator 

The Schrodinger equation for the harmonic oscillator is 

- ( h 2 / 2 m )  d2i,b/dz2+(fmw2z2-E)i,b = 0. 

Introducing the length scale 1 defined by 

I’ = h/2mw 

z = lx, 

the Schrodinger equation becomes 

and the variable x defined by 

d2u/dx ’ - (tx ’ - A )U = 0 

where 

A = E / h w .  

The parabolic cylinder functions provide two linearly independent solutions 

ui(x,A)= U(-A,x), u ~ ( x ,  A)=T(&+A)V(-A, x) .  
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The .phase function is given by 

6(x, A)=, f ( -h ,  x)~tan-'[r(t+A)V(-A,x)/U(-A,  x)], (54) 

k;(-A, ,  b)- , f ( -An,  a )  = nT, ( 5 5 )  

b = B/l ,  a = A / [ .  (56) 

where ,f is a known function. The quantisation condition is 

choosing the plus sign for the increasing function ,f of x. Here 

This represents, formally, the complete solution to this quantisation problem. To the 
extent that ,f is computable with arbitrary accuracy it may also represent the practically 
most direct solution, as discussed in § 2. 

For negative values of x we may use the relations 

U(-A, - x )  =(cos nA)u2+(sin n A ) u l ,  

r(; + A v(-A, -XI  = (cos T A  )U - (sin T A  )uz ,  
(57) 

which imply 

tanj(-A, - x )  =cot[,f(-A, x ) + n A ]  

or 

, f ( -A ,  - x ) = f n - n A  - , f ( - A , x ) .  ( 5 8 )  

Consider first the case of A = 0 and B + 00, which corresponds to a reflecting 
barrier at the centre. For x = 0 

k; ( -A ,  O ) = n ( ; - : A ) ,  (59 )  

while for x + +00 

X ( - A , x ) + ; n .  (60) 

A n = ( 2 n - 1 ) + : .  (61) 
These are the odd quantum numbers corresponding to wavefunctions of odd parity, 
which vanish at x = 0. The density of eigenvalues is 

for A 2 0. (62) 

Thus the quantisation gives 

p ( A )  = -T - ' - '  x (-A, O ) = ;  

For the case of A + -00 and B + +a, using ( 5 8 )  in ( 5 5 ) ,  we get 

A,, = ( n - l ) + ; ,  (63) 

p ( A )  = 1 for A 2 0. (64) 

as usual. The density now becomes 

As it  is generally true that there are no eigenvalues corresponding to energies 
smaller than the potential minimum, we shall not discuss the case of A s 0 explicitly. 
However, as there are no oscillations of the solutions of the differential equation in 
this range, the phase function will not vary enough with x to provide a solution of 
the equation ( 5 5 ) .  For n 2 1 the phase must change by at least T ,  and this requires 
zeros of u 1  and u2 ,  which do not occur for A s 0. 
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As in the previous section 1 is a quantum length, which becomes small in the 
classical limit. If A, is simultaneously large, for 0 G x <CO we have (Abramowitz and 
Stegun 1965) 

j ( - A ,  x )  - tan-’[Bi(t)/Ai(t)] = &(-,+I, (65) 

5 = x / 2  JA, (66)  

where, defining 

we have for [ s 1 
2 1 /2  2 / 3  i=-($A[cos-’[-[(1-[ I} , 

and for 5 3 1 

r = {;A [[(t2 - 1 - cosh-’ [I}”/’. 
Using the leading asymptotic forms, which for finite 6 becomes justified by the large 
factor A in ( 6 7 )  and (68) ,  

for t < 0, (69)  I 2 3 / 2  i j ( - r ) - z T  - 3 ( - t )  

& ( - t )  - ~ / 2  for t > 0, (70)  
the phase function becomes 

j ( -A,  x j - $T - A [COS-’ [ - [( 1 - [2)1’2]  ( 7 1 )  

j ( - h , ~ j - ~ / 2  for [ 5 1,  172) 

valid for x 2 0. The corresponding expressions for x < 0 can be obtained from (58). 
Defining 

for Os[s 1, 

= a12 J i ,  (73)  

[ b  = b/2&, ( 7 4 )  

we find for the particular case of b > 0 and a = -b < 0 that the quantisation condition 
becomes 

( 7 5 )  

2 1 this gives again the result ( 6 3 ) ,  since the classical limit causes the transitional 

n = (2/r)An[sin-’ [b  -&)1’2], ( 7 6 )  

where [ b  depends on A, according to ( 7 4 ) .  This again is equivalent to the result 
obtained by the Bohr-Sommerfeld rule. For very large quantum numbers th + 0, and 
expanding the right-hand side of ( 7 6 )  gives 

1 nrr = 2,f(-A,, b ) + r h ,  -3x.  

For 
region to shrink to zero near [ b  = 1. For [b  5 1 

A, = l n ~ / 2 b ) *  ( 7 7 )  
corresponding to free motion in a box of length b - a  = 26. In this limit the density 
of eigenvalues becomes 

p ( A ) =  ( 2 / ~ ) , f ’ ( - A ,  b ) +  1. ( 7 8 )  
Thus, for 5 6  2 1 again simply 

p i A ) =  1 forOsA s i b 2 ,  ( 7 9 )  
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and for & s 1 

For large A this gives 

p (A) - (2b /2~) (1 /4h )  

as for the free motion in the box, while p(A)-* 1 for A + b b 2 .  The discontinuity in the 
first derivative of p ( A )  is, as in 0 3, due to the classical limit. The point where it occurs 
corresponds to 

(82 )  

where the potential is discontinuous if we regard the boundary conditions as caused 
by an infinitely large positive potential energy outside the interval (A,  B ) .  

The relative size of the correction to (81) is of order A- ' ,  This correction may be 
reduced to being of order A -2 by taking 

E = t m w 2 B 2  = V ( B )  

p ( A )  ( 2 b / 2 ~ ) ( A  -b2/12)-1 '2 .  (83) 

The quantity subtracted represents the average potential energy for a plane wave 
motion of uniform density inside the interval (A ,  B )  = (-B, B ) .  

5. Conclusions 

For a general class of homogeneous, linear, second-order differential equations we 
have discussed the eigenvalue conditions corresponding to solutions which are subject 
to boundary conditions at two different points, where they must vanish. This eigenvalue 
problem may be expressed in the simple form 

B(b, A.)-e(a,h.)=nT,  (84) 

where B is a phase function related to two linearly independent solutions of the 
differential equation. If the equation is standard and these solutions are known 
standard functions, as is often the case, then the phase function may be regarded as 
equally available. The nature of the problem is such that solving the equation (84) 
in such cases should be comparatively straightforward, perhaps sufficiently straightfor- 
ward that we may regard (84) as an exact solution. In the present paper, however, 
we have not attempted to demonstrate this explicitly. On the other hand, it has been 
shown analytically that the condition (84) is equivalent to a number of standard results 
of the quantisation of the Schrodinger equation, including the cases of a particle moving 
within finite bounds in a gravitational and a harmonic oscillator potential. In these 
cases we have shown that (84) provides the correct results in the classical limit, which 
results can be also, and more directly, obtained by the Bohr-Sommerfeld quantisation 
method. The method based on (84) allows also the consideration of the corrections 
to this limit, in an analytical way so far as asymptotic expansions are available for the 
independent solutions or the phase function directly. It is therefore conceivable that 
(84) may also be of use in analytical work. 

The form of the eigenvalue condition is such that if the construction of a continuous 
density of eigenvalues is relevant, then it can be obtained directly, without first having 
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to calculate eigenvalues. This density is given by 

P ( ~ ) = . r r - ’ [ e ’ ( 6 , ~ ) - ~ ’ ( a , ~ ) ]  ( 8 5 )  

in terms of the derivative of the phase function with respect to A .  In the same way 
as (84), if the phase function is available, this result does not depend on such procedures 
as quadrature. It is also of interest to note that if (85) provides the density of 
eigenvalues A for a problem in which the one-dimensional equation considered here 
results from the separation of variables in an equation of three dimensions, then it 
may be relevant to form a convolution of p ( A )  with the corresponding densities arising 
in the other dimensions in order to obtain the density of the sum of the eigenvalues. 
As the density of eigenvalues for a two-dimensional problem is asymptotically con- 
stant, and for free motion in the two dimensions according to the Schrodinger equation 
is constant for all A ,  the convolution of such a constant density with (85) may in some 
such cases reduce simply to the integral, and the total density becomes 

where p2 is the density for the two-dimensional part, and (a, 6)  is the range of the 
motion in the third dimension. Hence, in a one-dimensional potential in three- 
dimensional problems the density of the total eigenvalue, which may be the total 
energy, may be obtained directly from the phase function without differentiation. 
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